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ABSTRACT 

Representation theorems for vector-valued Laplace transforms are discussed. 
Necessary and sufficient conditions are obtained in order that a function be 
the Laplace transform of a general vector measure and of a vector measure of 
finite variation, finite q-variation or finite q-semi-variation for 1 < q _< ~3. 

1. Inlroduction 

Let X be a Banach space and let f (s)  denote a function defined on [-0, 0o) with 

values in X. We shall be interested in finding conditions, necessary and sufficient, 

in order that f (s)  be the Laplace integral (with respect to some vector measure 

defined on the Borel subsets of  [,0, 0o)) which assumes values in X or in X**, 

that is, 

(1) f (s)  = e-*tla(dt) for s > 0, 

where the integral on the right-hand side of  (1) exists in one sense or another. We 

shall prescribe conditions on our vector measure such as finite variation or semi- 

variation or finite q-variation or q-semi-variation, for 1 < q < 00, and obtain 

necessary and sufficient conditions for the representation to hold. 

In recent years extensive work has been done on this subject by Miyadera I-5] 

and Zaidman [,9]-[13].  Most recently, in his thesis [8], Whitford has made a 

substantial contribution to the theory. While all of  the above papers have made 

use of  the inverse operator of  Widder [7], it is our purpose here to obtain necessary 

and sufficient conditions of  a different type. We also give a complete solution to 

problems in cases that have been left open by the authors mentioned above. 

Received October 11, 1972 

73 



74 D. LEVIATAN Israel J. Math., 

In Section 2 we discuss measures of  finite variation or semivariation and in 

Section 3 we deal with measures of  finite q-variation or q-semi-variation. 

2. Measures of  finite variation or semi-variation 

Let /z be a measure defined on the Borel subsets of [0, oo) with values in a 

Banach space X. Define the semi-variation of # by 

I" II, IIEo, oo) -- sup ,-~t oqgA, 

where the supremum is taken over all finite collections of disjoint Borel sets in 

[0, oo) and scalars ct, with I ~, l < 1, and all n > 1. The semi-variation of a vector 

measure is always finite. Define the variation of  # by 

111 ~ HI [o, ~ )  : sup ~ II ~A, II 
t = 1  

where the supremum is taken over all finite collections of disjoint Borel sets in 

[0, oo). Evidently II ~ II [o, oo) ____ 111 # III [0, oo) and the variation of  # need not be 

finite. 

Our first result extends a result of Widder [7] in the case where X is the complex 

field; but employs a diflerent method of  proof. 

TnmerM 1. Let f (s )  be a vector-valued function f rom [0, oo) into X.  Then 

there exists a vector measure defined on the Borel sets in [0, oo) with values in 

X** such that 

(2) I~(" )x* is in rca [0, oo) for  each x* ~ X*; 

(3) the mapping x* ~ l Z ( ' ) x *  is continuous in the w* topologies 

of X* and rca[O, ov); 

i 
oo 

(4) x ' f  ( s )=  e-~'#(dt)x * for s > 0 with x * ~ X * ;  

i f  and only i f  f (s) is differentiable infinitely often in (0, oo) and 

n k 1l - < o o  

where the supremum is taken over all finite sets of scalars ~, with I~, I-- 1, a .  
n >->_ O, and all s > O. Moreover 

(63 II ~ I1 Co, oo) = H. 
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PROOF. Suppose p exists such that (2), (3), and (4) hold; then for each x* ~ X* 

x ' f  (s) is holomorphic in s > 0, hencef(s) is differentiable infinitely often. By (4) 

whence 

ri ii (7) sup ,_z ~ ~k~i<~,(~) __< i1~II Eo, oo). 

Conversely, suppose that f(s) is differentiable infinitely often in (0, oo) and that 

(5) holds. Then a crucial part in the proof(and in fact throughout the whole paper 

is the observation that (5) implies that for every 2 > O, 

e-Zkls(-- s)kf(k)(s) exists, and that 
k=O -k~ 

(8) 
lim ~ e -ak/s(- s)k 
,-,~o k=O k! f(k)(s) = f(2), 2 > O. 

In order to prove this let x* e X*. Then by (5) 

~_ ~ ~.  x,s<~>(s) =< u II x, I1, 

for all n > 0 and all finite sets of  ~i wi th [ a~[ < 1. Hence 

@k 

~ I x*s(~>(s) I < ull x, It. 
k=O 

In turn this implies that x ' f  (s) is holomorphic in s > 0 (see Widder [7, Th. 

VII.13-]). Consequently 

k=O 

(see I'3, Secs. 3.10, 3.11]) and (8) is evident. 

Define now the continuous operator U: Co[0, oo) ~ X (where coro , oo) is the 

space of  all continuous functions in [0, oo) which vanish at infinity, normed by 

the sup-norm) as follows. Since for each 2 > 0, e -a '~Co[0 ,  c~), we define 

U(e -~') = f(2)  and extend U linearly to the linear combinations of the functions 

{e-~}, ~ > 0. Now if 
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e(t) = ~ a iexp (-- 2it), 
I = t  

then by (5) and the uniform boundedness principle it follows that 

__x ~ o ___If sup Io(t)l. 
k -  �9 0 6 t < o o  

This in turn implies by (8) that 

(9) 
__< n II g IJ 

Since the linear combinations of {e-Xt}, 2 > 0, are dense in Col0, c~) it follows 

by (9) that U may be extended to a continuous operator on CoEO, oo) which we 

will continue to call U. Now there exists a vector measure satisfying (2) and (3) 

(similar to the Bartle-Dunford-Schwartz theorem ]-2, Th. VI.7.2]) such that for 

all g ~ Col0, 00) and all x* e X* 

L x*Uo = O(t)#(dt)x*. 

In particular we obtain (4) by taking 0(t) = e -st for s > 0. Also II # tl [0, ~o) 
= II u II --- u by (9); hence (6) follows by (7). This completes the proof. 

Corollary 2 is an immediate consequence of Theorem 1. 

COROLLARY 2. I f  X is reflexive and f(s) is a vector-valued function from [0, 00) 

into X, then there exists a measure, defined on the Borel subsets of FO, 00) into X, 

such that 

(10) X*l~(" ) is in rca FO, oo) for each x* ~ X*; 

(11) f(s) = e-St#(dt) for s > O, 

if and only if f (s) is differentiable infinitely often and (5) holds. 

We may want ~t to take values in X without assuming that X is reflexive. 

Theorem 3 achieves this by strengthening condition (5). 

THrOr.EM 3. Let f(s) be a vector-valued function from [0, c~) into X. Then 

there exists a measure, defined on the BoreI subsets of [0, 00) into X, such that 

(10) and (11) hold if and only if f (s) is differentiable infinitely often in (0, 00) 

and the set 
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(12) ~k f(k~(s): ek <=l,O<_k<n=O, 1,2,... 
k = O  �9 

is relatively weakly compact. 
Another characterization may be found in [8, Th. 1.62]. 

PROOF. First assume that (10) and (11) are satisfied. Then 

(13) k~=O O~ k S~---~.f(k)(s) = ff [k= o O~ k ~ e  -s' ]/~(dt). 

Now for any n > 0 and I Ctk[ < 1, 0 < k < n, 

1 < k=0 �9 = k = 0  k !  = 1 .  

Therefore the set (12) is contained in the absolute closed convex hull of  R(p), the 

range of/~. By [6], R(#) is relatively weakly compact; consequently, by the Krein- 

~mulian theorem (see [2, Th. V.6.4]), the absolute closed convex hull of R(#) is 

weakly compact, hence (12) is relatively weakly compact. 

Conversely, suppose (12) is relatively weakly compact. Then (5) holds and we 

may define the operator U of the proof of Theorem 1. The operator U is weakly 

compact. For if we have a bounded sequence of continuous functions (g~(t)}, 

I g, [ < M say, then the sequence {Ug,} is contained in the closure of the set 

{~k=o ak Skf(k)(s) " "[ak[<M' O < k < ' n = O ' l ' 2 ' " ' }  

which is weakly compact. Now there exists a vector measure from the Borel 

subsets of [0, ~ )  into X similar to [2, Th. VI.7.3] which satisfies (10) such that 

for all g ~ Co[0, ~ )  

lo ng( )~(d ) U g =  t t .  

In particular, for g(t) = e - ' t  where s > 0, we obtain (11). This completes the proof. 

We proceed now to vector measures of finite variation. One result is Theorem 4. 

THEOREM 4. Let f(s) be a vector-valued function from [0, oo) into X. Then 
there exists a regular vector measure of finite variation, defined on the Borel 

subset of [0, oo) into X, such that (11) holds if and only if f (s) is differentiable 
infinitely often in (0, oo) and 

(15) sup (k~(s) = H < oo. 
s > 0  k - ~ 0  
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Furthermore III/~ III [0, oo) = n .  

For a different condition see 18, Th. 1.10]. 

PROOF. As before, (11) implies that f(s) has derivatives of all orders, and that 

(15) is necessary follows immediately by (13) and (14) which also imply that 

n < Iti P 1tl 1"0, oo). 

Conversely, suppose f(s) has derivatives of all orders and that (15) holds. Since 

(5) implies 

oo k 

lim l~ e ~.v f ( 5 ) = f ( ; 0 ,  
$"-~ r k = O  

this is certainly true with (15) replacing (5). Now the linear combinations of 

{e -~t} for ~. > 0 are dense in Col0, or), therefore it follows easily by (15) that for 

each g e Col0, oo) 

lim ~ g ( k ) ~ f ( ~ ) ( s ) e x i s t s .  
a~oO k = O  

The operator U of the proof of Theorem 1 is thus given by 

U # =  lim ~g(k)(--~_,s)kf(k)(s). (16) 
8 " * ~  k = O  

We prove now that for any finite set of  functions gt,...,g, eCo[O, oo) with 

Y: - ,  [g, I <- 1 we have 

(17) II vg, ll s 
i = 1  

Then it follows, similar to [1, Th. 19.2, 19.3] (see also [8, Lem. 0.6]), that there 
exists a regular vector measure of finite variation, defined on the Borel subsets of  
1-0, oo) into X, such that 

f: Ug = g(t)#(dt) for g e Col0, oo). 

In particular (11) follows for g(t) = e -st where s > 0. Thus let g, ,  . . . ,g,  e Col0 , oo) 

with E~= 1 Io, I <= 1 and let us prove (17). By (16) 

11 sg, ll --- lim gi (k)(s) 
8"*00 - -0  

_< lira ~, gi ~.f(k)(s) , 
a-+co k = O  

where the last limit exists by (15). Hence 
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z Ilvg, ll----lim Z 
/ = 1  s'-,Qo k = O  i = 0  

S k 

This also implies Ill ~ 111 [0, oo)_< H which completes the proof. 

3. Measures of finite p-variation or p-semi-variation 

Let # be a vector measure, defined on the Borel subsets of [0, oo) into X. Let 

1 < p < oo and 1/p + 1/q = 1. Define the p-semi-variation of # as follows (see 

[1, p. 246]). 

I i  

~p[0, oo) = sup I[ Z ai~A i 
U = 1  

where the supremum is taken on all step functions ~b = Y~'--1 ~iXa, 

A{s are pairwise disjoint Borel subsets of  [0, oo) and such that 

f f  l~(t)l~dt <= 1. 

Also define the p-variation of p as follows (see [1, p. 241]). 

such that the 

~.[o,~) = sup ~ I~,1 II~A, II 
i = 1  

where the supremum is taken on all the step function ~ mentioned above. 

Our results in this section generalize representation theorems for Laplace trans- 

forms of functions in LP[0, oo). Our conditions are similar to those in Section 2, 

and therefore different from the well-known conditions of  Widder [7] which, in 

the case of  reflexive X, were generalized by Miyadera [5]. 

First we prove Theorem 5. 

TnEOg~M 5. Let f ( s )  be a vector-valued function f rom [0, oo) into X,  and let 

1 < p < oo. Then there is a measure p, defined on the Borel subsets of [0, oo) into 

X,  with finite p-semi-variation such that (11) holds if and only if f ( s )  is dif- 

ferentiable infinitely often in (0, oo) and 

(18) 

and 

(19) 

sup sup s p- l  - ( H v )  p < o o  if l < p < o o  
[x*[_~l s>O k=O 

sk+ l 
sup ~ IIs,",(s)II -= -~0o < ~ if p = oo. 
s>O 
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Furthermore tip[0, oo) = Hp, I < p < co. 

PROOF. Suppose first that (11) holds with a vector measure ~ such that tip[0, oo) 

< oo for some l < p  < oo. Then it follows (by [1, Prop. 13.1] and a well-known 

Riesz theorem) that for each fixed x* e X* with [I x* II --- 1, the measure x*#( .  ) is 

the indefinite integral of a function in LP[0, oo), that is, r e LP[0, oo) such that 

x*pA = J'a r  and 

oo 

fo I r -- oo} < tip[O, oo) < p < 0o (x~'#)p[o, if 1 (20) 

o r  

(21) ess sup [r = (x'~p)~o [0, co) =< fi~[O, oo) if p = ~ .  

Also it follows by (1I) that 

f) x ' f  (s) = e-~r for s > 0. 

Hence it follows by [4, Th. 1, 2] and (20) (if 1 < p < oo) and by [7, Th. VII.16a] 

and (21) (if p = ~ )  that for each fixed ]1 x* i] < 1, x ' f  (s) has derivatives of  all 

orders in (0, ao). This implies in turn (see [3]) that the same is true forf(s) ,  and 

'fo (22) sup s p- 1 x,f(k)(s) < I r [Pdt 
s>O k = O  

< tip[0, oo) if 1 < p < oo, 

o r  

S k + l  

sup I l esssup l i 
(23) ~>o ~>o 

~< ~oo[o, oo) if p = oo. 

This in turn implies (18) and (19) respectively. Conversely, suppose either that 

(18) holds (if 1 < p < oo) or (19) holds (if p = oo). In the case where 1 < p < 0% 

then (18) implies that x ' f  (s) is holomorphic in (0, oo) (by [4, Proof of  Th. 1]). The 

same method of  proof may be used to show that if p = oo, then (I9) implies the 

same. Therefore (8) holds in either cases (see [3]). Now the functions {e -xt} for 

2 > 0 are all in Lq[0, oo) for every 1 < q < oo and their linear combinations are 

dense in Lq[0, oo) for 1 < q < oo in the respective norms. Therefore if we define 

U(e -~') = f (2)  
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and extend it linearly to the linear combinations of {e -xt} for 2 > 0, then we will 

show that U may be extended to a continuous operator (again denoted by U) of 

Lq(O, o0) into X where 1/p + 1/q = 1. To this end let g(t) = ~ i ~  a~exp(-2d) .  

Then by (8) 

(24) Ug = lim 
S--~ O0 

Now let 1 < p < oo ; then for any 

and (18) 

lx*Ugl < limsup ~ I 
S'-* oO k = 0  

(25) 

fixed 11 x* II --< 1 we have by H61der's inequality 

t 
=< lim sups..,o~ (k=~O Ig(k) al) 1/a (k=~0 sP-IISkk'~.x*f(k)(s) I p) 

Now it is readily seen that for each linear combination of the {e -'~t} 2 > 0, 

(~=~o Ig(k)'"l)l'~=(fo~la(t)l"dt)'/" lim 
S..~ CO 

so that (25) implies 

(26) 

I/p 

11 ug II ~ H, II 9 llq- 
Now that U is defined for all functions in Lq[0, oo) into X it follows by (26) that 

for all g ~ Lq[0, 0o) inequality (26) holds. Since II U I1o =< H,, then it follows (by 

[1, Th. 13.1]) that there exists a vector measure ~t with finite p-semi-variation 
such that for all g e Lq[0, ~ )  

2 u o  ; g(0~(d0. 

Specializing to g(t) = e -s '  for s > 0 we obtain (11). Also by [1, Th. 13.1],/~p[0, oo) 

= II U I[q --< H,  which, together with (22), implies #,[0, 00) = Hp. This completes 

the proof for 1 < p < 00. For p = oo, it follows by (19) that for 

g(t) = ~ a iexp(- 2it ) 
i=1 

-- n~llgll~ 
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The proof  is concluded now as in the case 1 < p < oo. 

Since for p = oo, tip[0, oo)=/Tv[0 , oo), Theorem 5 also provides us with a 

representation theorem for measures of  finite oo-variation. In a way this ex- 

plains why (19) resembles condition (27) below more than it does condition (18). 

For measures with finite p-variation we have the following result. 

THEOREM 6. Let f(s) be a vector-valued function from [0, oo) into X and let 

1 < p < oo. Then there exists a vector measure g, defined on the Borel subsets 

of [0, oo) into X, of finite p-variation and such that (11) holds if and only if f(s)  

has derivatives of all orders in (0, oo) and 

II II sup s p -  ~ ~ . / ( ~ ( s )  ~ - ( H p )  p < ~ .  
s>O k=O 

(27) 

Furthermore 

tip[O, oo) = H r 

PROOf. First suppose (11) holds with/a of finite p-variation. Then 

Denote 

( _  S)kf~k)(S ) = fro (st)k -st - -  - ~. ~.  e It(at) for s > 0. 

(st)k e -a for s > 0, k = 0, 1,2,...  p~k(t)  = 

and let for ;t > 0, Ai = [i/)~, (i + 1)/,~), i =  0, 1,2, . . . .  Then the step function 

dpk = ~=OPsk(i/)t)XA, is defined in [0, oo) and dpk(t)-q'psk(t ) a s  2 approaches 

infinity in the U[0, oo) norm for every 1 < q -<_ oo. Consequently for each fixed k 

fo ~ 4~k(t)~(dt) --, <k~(s) as ~. --, m 
k. (28) 

and 

(29) ~o ~ 1 ~ k ( t ) d t  ~ - -  as ~. ~ oo. 
s 

Now let n be arbitrary, then 

oo ao \ p - 1  

~ {lifo dPk(t)g(dt)7(fo dPk(t)dt) I ] 
k=0 

< ~.v-t Zp,k(i[~. ~A~ p,,(i[1 
k=0 ~ \ i = 0  0 
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By Jensen's inequality (see 1-14, p. 23-24]) the last expression is 

) < 2 p-I p~k(i/2) ps~(i/2)l] laA, I] p psk(i/2) 
k = 0  i = 0  i = 0  i 0 

= .~,-, ~. ~. p=~(i/~)llt, A,[l" 
k = 0  l = 0  

= 2"-' ~ I11xA, II" ~ P'k(ii2)" 
/ = 0  k = 0  

Since ~.k~=O psg(t) = 1 for 0 < t < oo and p~k(t) > O, it follows now by rl,  Prop. 

13.1] that 

 {i',fo iL'/(fo ) 
co \p-I i 

q~,(t)#(dt) qb,(t)dt < aA, '[0 
k = 0  i = 0  

=< (#,,[0, oo))". 

Letting ,1. approach infinity we obtain by (28) and (29), 

k = O  

which, being true for all n and all s, implies (27) and 

(30) np  < fipl,0, oo). 

Conversely, suppose that f (s)  has derivatives of all orders and that (27) holds. 

Then evidently (18) holds. Hence the operator U of the proof of Theorem 5 may be 

defined. This time we know more about the operator U. If A is a set of  finite 

Lebesgue measure then ;(a ~ Lql' O, oo). It follows by (26) that 

(30 UXa = lim,,-oo k=o~L'(~-) (~f (k) (s)"  

For the linear combinations of the functions {e -hi} for 2 > 0 are dense in 

U[0, oo) and we have for such a combination 9(t), 

( -  st) , '~/o ~ X~ k ( -  s2Y 
XA ~i ~ J  WX,-- ZA ~2 -- k! f(k)(s2) 

k k = 0  

- " 

k = O  k = O  

= I~ + 12 + 13, say. 

+ 

- W - .  J ~ 2q 

+ 
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Now by HOlder's inequality (compare with (25)) 
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][I U lll~ : sup ~ I[ U(~,Xa,)11 
i = 1  

where the supremum is taken on all step functions q~ = E~"=I ~Z,t, (where 

A1, . . . ,A, are pairwise disjoint and limb IIq --- 1), then 

(32) I1[ u Illq _-< H r  

This in turn implies by [1, Th. 13.1 and Cor. 13.1] that there exists a vector 

measure /~, defined on the Borel subsets of [0, oo) into X, such that 

~,[o, oo) = Ill u Ill,, 

where ~b = XT=, cqXa,. 

Therefore if we define the norm 

j (k)j I[ u(~,xa,)ll ~ l imsup ~ ~ O~,Za, S F3f(k)(s) 
i=I s"*oo k = 0  i = 1  I r~. 

k = 0  ~=1  Hp 

and for all g e H[O, oo) 

~176 ) (dO Ug = t tz . 

I ,  < ~ L~ _ g I SI  (k) 
-- k=o 71 i ~ f  (sO 

-, f[I  a(o - g(t)Iqdt, 

since Za is the characteristic function of  a set of  finite Lebesgue measures and g(t) 

is a linear combination of the {e - i t }  for 2 >  0. Hence for a proper g(t) and all s, 

sufficiently large 11 ~ t. The same is true for I z while by (24) 12 ~ 0 as s t , s  2 ~ oo 

This proves (31). 

Let Ax, "" ", A, be disjoint Borel subsets of [-0, oo), each of  finite measure, and let 

cq, .. . ,~, be constants. Then by (31) 
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Specializing to g( t )= e -~t for s > 0 we obtain (11). Combining now (30) and (32) 

we conclude that/Tp[0, oo) = H r This completes the proof. 

REMAgK. If X is the complex field, then/~p[0, m) and/Tp[0, oo) coincide and 

so do Theorems 4 and 5. 

In order to relate Theorem 6 more closely to vector L p spaces we cite our next 

result (whose proof  is similar to that of  Theorem 5) making use of  [1, Th. 13.8] 

instead of [1, Th. 13.1 and Cor. 13.1], namely Theorem 7. 

THEOREM 7. Let f (s)  be a vector-valued function from [0, oo) into X,  let Z be 

a normin# subspace of X*, and let 1 < p < m. Then there exists a function G(t) 

from [0, oo) into Z* with I1G(t)tl ~ L'[0, oo) such that for all z ~ Z 

zf(s) = e-StG(t)zdt for s > 0, 

if  and only if  (27) holds (for 1 < p < oo) and (19) holds (for p = oo). Moreover 

II = Hp if 1 < p < oo 

and 

ess sup ]l G(t)11 = i f  p = oo .  
O~t< co 

If X is reflexive we may take Z = X* and have the following corollary as an 

immediate consequence. 

COROLLARY 8. Let f ( s )  be a vector-valued function from [0, oo) into a reftxive 

space X and let 1 < p < oo. Then there exists a function G from [0, oo) into X 

with [I G(t)II L'r0, oo) such that 

(33) f (s)  = f o  e-'tG(t)dt for s > O, 

if  and only if  (27) holds (if  I < p < oo) and (19) holds (i f  p = oo). 

Another necessary and sufficient condition for (33) to hold with G: [0, oo) --, X 

has been given by Miyadera [5]. If  X is not reflexive, neither our condition nor 

Miyadera's is sufficient for the existence of G: [0, oo) -~X as demonstrated by 

Theorem 7, in our case, and explained by Whitford [7, Rein. 1.24] about Miya- 

dera's condition. We do not know the analog of Theorem 7 with Miyadera's 

condition; nevertheless Theorem 7 provides a complete picture of the non- 

reflexive case. 
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To conclude, Theorem 9 is a consequence o f  Theorem 7 and of  El, Th. 13.8]. 

THEOREM 9. Let  f ( s )  he a vector-valued funct ion  f r o m  [0, oo) into X and let 

1 < p < oo. I f  (27) holds ( for  1 < p < oo) or (19) holds ( for  p = co) and if, in 

addit ion,  the set 

c~ ~ f(~)(s) where ~p is a step funct ion  and 
k=0 

I ldt =< 1,s >o 

is relat ively  weak ly  compact,  then there exists a func t ion  G(t) f r o m  [0, oo) into X 

w.h  I1  (t)II goc0 oo) such that 

f ( s )  = (t) dt f o r  s > O. 
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