

SOME VECTOR-VALUED LAPLACE TRANSFORMS

BY

D. LEVIATAN

ABSTRACT

Representation theorems for vector-valued Laplace transforms are discussed. Necessary and sufficient conditions are obtained in order that a function be the Laplace transform of a general vector measure and of a vector measure of finite variation, finite q -variation or finite q -semi-variation for $1 < q \leq \infty$.

1. Introduction

Let X be a Banach space and let $f(s)$ denote a function defined on $[0, \infty)$ with values in X . We shall be interested in finding conditions, necessary and sufficient, in order that $f(s)$ be the Laplace integral (with respect to some vector measure defined on the Borel subsets of $[0, \infty)$) which assumes values in X or in X^{**} , that is,

$$(1) \quad f(s) = \int_0^\infty e^{-st} \mu(dt) \text{ for } s > 0,$$

where the integral on the right-hand side of (1) exists in one sense or another. We shall prescribe conditions on our vector measure such as finite variation or semi-variation or finite q -variation or q -semi-variation, for $1 < q \leq \infty$, and obtain necessary and sufficient conditions for the representation to hold.

In recent years extensive work has been done on this subject by Miyadera [5] and Zaidman [9]–[13]. Most recently, in his thesis [8], Whitford has made a substantial contribution to the theory. While all of the above papers have made use of the inverse operator of Widder [7], it is our purpose here to obtain necessary and sufficient conditions of a different type. We also give a complete solution to problems in cases that have been left open by the authors mentioned above.

Received October 11, 1972

In Section 2 we discuss measures of finite variation or semivariation and in Section 3 we deal with measures of finite q -variation or q -semi-variation.

2. Measures of finite variation or semi-variation

Let μ be a measure defined on the Borel subsets of $[0, \infty)$ with values in a Banach space X . Define the semi-variation of μ by

$$\|\mu\| [0, \infty) = \sup \left\| \sum_{i=1}^n \alpha_i \mu A_i \right\|$$

where the supremum is taken over all finite collections of disjoint Borel sets in $[0, \infty)$ and scalars α_i with $|\alpha_i| \leq 1$, and all $n \geq 1$. The semi-variation of a vector measure is always finite. Define the variation of μ by

$$\|\mu\| [0, \infty) = \sup \sum_{i=1}^n \|\mu A_i\|$$

where the supremum is taken over all finite collections of disjoint Borel sets in $[0, \infty)$. Evidently $\|\mu\| [0, \infty) \leq \|\mu\| [0, \infty)$ and the variation of μ need not be finite.

Our first result extends a result of Widder [7] in the case where X is the complex field; but employs a different method of proof.

THEOREM 1. *Let $f(s)$ be a vector-valued function from $[0, \infty)$ into X . Then there exists a vector measure defined on the Borel sets in $[0, \infty)$ with values in X^{**} such that*

$$(2) \quad \mu(\cdot) x^* \text{ is in rca } [0, \infty) \text{ for each } x^* \in X^*;$$

$$(3) \quad \text{the mapping } x^* \rightarrow \mu(\cdot) x^* \text{ is continuous in the } w^* \text{ topologies of } X^* \text{ and rca } [0, \infty);$$

$$(4) \quad x^* f(s) = \int_0^\infty e^{-st} \mu(dt) x^* \text{ for } s > 0 \text{ with } x^* \in X^*;$$

if and only if $f(s)$ is differentiable infinitely often in $(0, \infty)$ and

$$(5) \quad \sup \left\| \sum_{k=0}^n \alpha_k \frac{s^k}{k!} f^{(k)}(s) \right\| \equiv H < \infty$$

where the supremum is taken over all finite sets of scalars α_i with $|\alpha_i| \leq 1$, all $n \geq 0$, and all $s > 0$. Moreover

$$(6) \quad \|\mu\| [0, \infty) = H.$$

PROOF. Suppose μ exists such that (2), (3), and (4) hold; then for each $x^* \in X^*$ $x^*f(s)$ is holomorphic in $s > 0$, hence $f(s)$ is differentiable infinitely often. By (4)

$$x^* \left[\sum_{k=0}^n \alpha_k \frac{s^k}{k!} f^{(k)}(s) \right] = \int_0^\infty \left[\sum_{k=0}^n \alpha_k \frac{(-st)^k}{k!} e^{-st} \right] \mu(dt) x^*$$

whence

$$(7) \quad \sup \left\| \sum_{k=0}^n \alpha_k \frac{s^k}{k!} f^{(k)}(s) \right\| \leq \|\mu\| [0, \infty).$$

Conversely, suppose that $f(s)$ is differentiable infinitely often in $(0, \infty)$ and that (5) holds. Then a crucial part in the proof (and in fact throughout the whole paper) is the observation that (5) implies that for every $\lambda > 0$,

$$(8) \quad \sum_{k=0}^{\infty} e^{-\lambda k/s} \frac{(-s)^k}{k!} f^{(k)}(s) \text{ exists, and that} \\ \lim_{s \rightarrow \infty} \sum_{k=0}^{\infty} e^{-\lambda k/s} \frac{(-s)^k}{k!} f^{(k)}(s) = f(\lambda), \quad \lambda > 0.$$

In order to prove this let $x^* \in X^*$. Then by (5)

$$\left\| \sum_{k=0}^n \alpha_k \frac{s^k}{k!} x^* f^{(k)}(s) \right\| \leq H \|x^*\|,$$

for all $n \geq 0$ and all finite sets of α_i with $|\alpha_i| \leq 1$. Hence

$$\sum_{k=0}^{\infty} \frac{s^k}{k!} |x^* f^{(k)}(s)| \leq H \|x^*\|.$$

In turn this implies that $x^*f(s)$ is holomorphic in $s > 0$ (see Widder [7, Th. VII.13]). Consequently

$$\sum_{k=0}^{\infty} e^{-\lambda k/s} \frac{(-s)^k}{k!} f^{(k)}(s) = f^{(k)}(s(1 - e^{-\lambda/s}))$$

(see [3, Secs. 3.10, 3.11]) and (8) is evident.

Define now the continuous operator $U: C_0[0, \infty) \rightarrow X$ (where $C_0[0, \infty)$ is the space of all continuous functions in $[0, \infty)$ which vanish at infinity, normed by the sup-norm) as follows. Since for each $\lambda > 0$, $e^{-\lambda t} \in C_0[0, \infty)$, we define $U(e^{-\lambda t}) = f(\lambda)$ and extend U linearly to the linear combinations of the functions $\{e^{-\lambda t}\}$, $\lambda > 0$. Now if

$$g(t) = \sum_{i=1}^m a_i \exp(-\lambda_i t),$$

then by (5) and the uniform boundedness principle it follows that

$$\left\| \sum_{k=0}^{\infty} g\left(\frac{k}{s}\right) \frac{(-s)^k}{k!} f^{(k)}(s) \right\| \leq H \sup_{0 \leq t < \infty} |g(t)|.$$

This in turn implies by (8) that

$$\begin{aligned} (9) \quad \|Ug\| &= \lim_{s \rightarrow \infty} \left\| \sum_{k=0}^{\infty} g\left(\frac{k}{s}\right) \frac{(-s)^k}{k!} f^{(k)}(s) \right\| \\ &\leq H \|g\|. \end{aligned}$$

Since the linear combinations of $\{e^{-\lambda t}\}$, $\lambda > 0$, are dense in $C_0[0, \infty)$ it follows by (9) that U may be extended to a continuous operator on $C_0[0, \infty)$ which we will continue to call U . Now there exists a vector measure satisfying (2) and (3) (similar to the Bartle-Dunford-Schwartz theorem [2, Th. VI.7.2]) such that for all $g \in C_0[0, \infty)$ and all $x^* \in X^*$

$$x^* U g = \int_0^\infty g(t) \mu(dt) x^*.$$

In particular we obtain (4) by taking $g(t) = e^{-st}$ for $s > 0$. Also $\|\mu\| [0, \infty) = \|U\| \leq H$ by (9); hence (6) follows by (7). This completes the proof.

Corollary 2 is an immediate consequence of Theorem 1.

COROLLARY 2. *If X is reflexive and $f(s)$ is a vector-valued function from $[0, \infty)$ into X , then there exists a measure, defined on the Borel subsets of $[0, \infty)$ into X , such that*

$$(10) \quad x^* \mu(\cdot) \text{ is in rca } [0, \infty) \text{ for each } x^* \in X^*;$$

$$(11) \quad f(s) = \int_0^\infty e^{-st} \mu(dt) \text{ for } s > 0,$$

if and only if $f(s)$ is differentiable infinitely often and (5) holds.

We may want μ to take values in X without assuming that X is reflexive. Theorem 3 achieves this by strengthening condition (5).

THEOREM 3. *Let $f(s)$ be a vector-valued function from $[0, \infty)$ into X . Then there exists a measure, defined on the Borel subsets of $[0, \infty)$ into X , such that (10) and (11) hold if and only if $f(s)$ is differentiable infinitely often in $(0, \infty)$ and the set*

$$(12) \quad \left\{ \sum_{k=0}^n \alpha_k \frac{s^k}{k!} f^{(k)}(s) : |\alpha_k| \leq 1, 0 \leq k \leq n = 0, 1, 2, \dots \right\}$$

is relatively weakly compact.

Another characterization may be found in [8, Th. 1.62].

PROOF. First assume that (10) and (11) are satisfied. Then

$$(13) \quad \sum_{k=0}^n \alpha_k \frac{s^k}{k!} f^{(k)}(s) = \int_0^\infty \left[\sum_{k=0}^n \alpha_k \frac{(-st)^k}{k!} e^{-st} \right] \mu(dt).$$

Now for any $n \geq 0$ and $|\alpha_k| \leq 1, 0 \leq k \leq n$,

$$(14) \quad \left| \sum_{k=0}^n \alpha_k \frac{(-st)^k}{k!} e^{-st} \right| \leq e^{-st} \sum_{k=0}^\infty \frac{(st)^k}{k!} = 1.$$

Therefore the set (12) is contained in the absolute closed convex hull of $R(\mu)$, the range of μ . By [6], $R(\mu)$ is relatively weakly compact; consequently, by the Krein-Šmulian theorem (see [2, Th. V.6.4]), the absolute closed convex hull of $R(\mu)$ is weakly compact, hence (12) is relatively weakly compact.

Conversely, suppose (12) is relatively weakly compact. Then (5) holds and we may define the operator U of the proof of Theorem 1. The operator U is weakly compact. For if we have a bounded sequence of continuous functions $\{g_i(t)\}$, $|g_i| \leq M$ say, then the sequence $\{Ug_i\}$ is contained in the closure of the set

$$\left\{ \sum_{k=0}^n \alpha_k \frac{s^k}{k!} f^{(k)}(s) : |\alpha_k| \leq M, 0 \leq k \leq n = 0, 1, 2, \dots \right\}$$

which is weakly compact. Now there exists a vector measure from the Borel subsets of $[0, \infty)$ into X similar to [2, Th. VI.7.3] which satisfies (10) such that for all $g \in C_0[0, \infty)$

$$Ug = \int_0^\infty g(t) \mu(dt).$$

In particular, for $g(t) = e^{-st}$ where $s > 0$, we obtain (11). This completes the proof.

We proceed now to vector measures of finite variation. One result is Theorem 4.

THEOREM 4. *Let $f(s)$ be a vector-valued function from $[0, \infty)$ into X . Then there exists a regular vector measure of finite variation, defined on the Borel subset of $[0, \infty)$ into X , such that (11) holds if and only if $f(s)$ is differentiable infinitely often in $(0, \infty)$ and*

$$(15) \quad \sup_{s>0} \sum_{k=0}^\infty \left\| \frac{s^k}{k!} f^{(k)}(s) \right\| \equiv H < \infty.$$

Furthermore $\|\mu\| [0, \infty) = H$.

For a different condition see [8, Th. 1.10].

PROOF. As before, (11) implies that $f(s)$ has derivatives of all orders, and that (15) is necessary follows immediately by (13) and (14) which also imply that $H \leq \|\mu\| [0, \infty)$.

Conversely, suppose $f(s)$ has derivatives of all orders and that (15) holds. Since (5) implies

$$\lim_{s \rightarrow \infty} \sum_{k=0}^{\infty} e^{-\lambda k/s} \frac{(-s)^k}{k!} f^{(k)}(s) = f(\lambda),$$

this is certainly true with (15) replacing (5). Now the linear combinations of $\{e^{-\lambda t}\}$ for $\lambda > 0$ are dense in $C_0[0, \infty)$, therefore it follows easily by (15) that for each $g \in C_0[0, \infty)$

$$\lim_{s \rightarrow \infty} \sum_{k=0}^{\infty} g\left(\frac{k}{s}\right) \frac{(-s)^k}{k!} f^{(k)}(s) \text{ exists.}$$

The operator U of the proof of Theorem 1 is thus given by

$$(16) \quad Ug = \lim_{s \rightarrow \infty} \sum_{k=0}^{\infty} g\left(\frac{k}{s}\right) \frac{(-s)^k}{k!} f^{(k)}(s).$$

We prove now that for any finite set of functions $g_1, \dots, g_n \in C_0[0, \infty)$ with $\sum_{i=1}^n |g_i| \leq 1$ we have

$$(17) \quad \sum_{i=1}^n \|Ug_i\| \leq H.$$

Then it follows, similar to [1, Th. 19.2, 19.3] (see also [8, Lem. 0.6]), that there exists a regular vector measure of finite variation, defined on the Borel subsets of $[0, \infty)$ into X , such that

$$Ug = \int_0^\infty g(t)\mu(dt) \text{ for } g \in C_0[0, \infty).$$

In particular (11) follows for $g(t) = e^{-st}$ where $s > 0$. Thus let $g_1, \dots, g_n \in C_0[0, \infty)$ with $\sum_{i=1}^n |g_i| \leq 1$ and let us prove (17). By (16)

$$\begin{aligned} \|Ug_i\| &\leq \lim_{s \rightarrow \infty} \left\| \sum_{k=0}^{\infty} g_i\left(\frac{k}{s}\right) \frac{(-s)^k}{k!} f^{(k)}(s) \right\| \\ &\leq \lim_{s \rightarrow \infty} \sum_{k=0}^{\infty} \left| g_i\left(\frac{k}{s}\right) \right| \left\| \frac{s^k}{k!} f^{(k)}(s) \right\|, \end{aligned}$$

where the last limit exists by (15). Hence

$$\sum_{i=1}^n \|Ug_i\| \leq \lim_{s \rightarrow \infty} \sum_{k=0}^{\infty} \sum_{i=0}^n \left| g_i \left(\frac{k}{s} \right) \right| \left\| \frac{s^k}{k!} f^{(k)}(s) \right\| \leq H.$$

This also implies $\|\mu\| [0, \infty) \leq H$ which completes the proof.

3. Measures of finite p -variation or p -semi-variation

Let μ be a vector measure, defined on the Borel subsets of $[0, \infty)$ into X . Let $1 \leq p \leq \infty$ and $1/p + 1/q = 1$. Define the p -semi-variation of μ as follows (see [1, p. 246]).

$$\tilde{\mu}_p [0, \infty) = \sup \left\| \sum_{i=1}^n \alpha_i \mu A_i \right\|$$

where the supremum is taken on all step functions $\phi = \sum_{i=1}^n \alpha_i \chi_{A_i}$ such that the A_i 's are pairwise disjoint Borel subsets of $[0, \infty)$ and such that

$$\int_0^\infty |\phi(t)|^q dt \leq 1.$$

Also define the p -variation of μ as follows (see [1, p. 241]).

$$\bar{\mu}_p [0, \infty) = \sup \sum_{i=1}^n |\alpha_i| \|\mu A_i\|$$

where the supremum is taken on all the step function ϕ mentioned above.

Our results in this section generalize representation theorems for Laplace transforms of functions in $L^p[0, \infty)$. Our conditions are similar to those in Section 2, and therefore different from the well-known conditions of Widder [7] which, in the case of reflexive X , were generalized by Miyadera [5].

First we prove Theorem 5.

THEOREM 5. *Let $f(s)$ be a vector-valued function from $[0, \infty)$ into X , and let $1 < p \leq \infty$. Then there is a measure μ , defined on the Borel subsets of $[0, \infty)$ into X , with finite p -semi-variation such that (11) holds if and only if $f(s)$ is differentiable infinitely often in $(0, \infty)$ and*

$$(18) \quad \sup_{|x^*| \leq 1} \sup_{s > 0} \sum_{k=0}^{\infty} s^{p-1} \left| \frac{s^k}{k!} x^* f^{(k)}(s) \right|^p \equiv (H_p)^p < \infty \text{ if } 1 < p < \infty$$

and

$$(19) \quad \sup_{s > 0} \frac{s^{k+1}}{k!} \|f^{(k)}(s)\| \equiv H_\infty < \infty \text{ if } p = \infty.$$

Furthermore $\tilde{\mu}_p[0, \infty) = H_p$, $1 < p \leq \infty$.

PROOF. Suppose first that (11) holds with a vector measure μ such that $\tilde{\mu}_p[0, \infty) < \infty$ for some $1 < p \leq \infty$. Then it follows (by [1, Prop. 13.1] and a well-known Riesz theorem) that for each fixed $x^* \in X^*$ with $\|x^*\| \leq 1$, the measure $x^*\mu(\cdot)$ is the indefinite integral of a function in $L^p[0, \infty)$, that is, $\phi \in L^p[0, \infty)$ such that $x^*\mu A = \int_A \phi(t) dt$ and

$$(20) \quad \int_0^\infty |\phi(t)|^p dt = (x^*\mu)_p[0, \infty) \leq \tilde{\mu}_p[0, \infty) \text{ if } 1 < p < \infty$$

or

$$(21) \quad \text{ess sup}_{s>0} |\phi(t)| = (x^*\mu)_\infty[0, \infty) \leq \tilde{\mu}_\infty[0, \infty) \text{ if } p = \infty.$$

Also it follows by (11) that

$$x^*f(s) = \int_0^\infty e^{-st} \phi(t) dt \text{ for } s > 0.$$

Hence it follows by [4, Th. 1, 2] and (20) (if $1 < p < \infty$) and by [7, Th. VII.16a] and (21) (if $p = \infty$) that for each fixed $\|x^*\| \leq 1$, $x^*f(s)$ has derivatives of all orders in $(0, \infty)$. This implies in turn (see [3]) that the same is true for $f(s)$, and

$$(22) \quad \sup_{s>0} \sum_{k=0}^{\infty} s^{p-1} \left| \frac{s^k}{k!} x^*f^{(k)}(s) \right|^p \leq \int_0^\infty |\phi(t)|^p dt \\ \leq \tilde{\mu}_p[0, \infty) \text{ if } 1 < p < \infty,$$

or

$$(23) \quad \sup_{s>0} \frac{s^{k+1}}{k!} |x^*f^{(k)}(s)| \leq \text{ess sup}_{s>0} |\phi(t)| \\ \leq \tilde{\mu}_\infty[0, \infty) \text{ if } p = \infty.$$

This in turn implies (18) and (19) respectively. Conversely, suppose either that (18) holds (if $1 < p < \infty$) or (19) holds (if $p = \infty$). In the case where $1 < p < \infty$, then (18) implies that $x^*f(s)$ is holomorphic in $(0, \infty)$ (by [4, Proof of Th. 1]). The same method of proof may be used to show that if $p = \infty$, then (19) implies the same. Therefore (8) holds in either cases (see [3]). Now the functions $\{e^{-\lambda t}\}$ for $\lambda > 0$ are all in $L^q[0, \infty)$ for every $1 \leq q < \infty$ and their linear combinations are dense in $L^q[0, \infty)$ for $1 \leq q < \infty$ in the respective norms. Therefore if we define

$$U(e^{-\lambda t}) = f(\lambda)$$

and extend it linearly to the linear combinations of $\{e^{-\lambda t}\}$ for $\lambda > 0$, then we will show that U may be extended to a continuous operator (again denoted by U) of $L^q[0, \infty)$ into X where $1/p + 1/q = 1$. To this end let $g(t) = \sum_{i=1}^n a_i \exp(-\lambda_i t)$. Then by (8)

$$(24) \quad Ug = \lim_{s \rightarrow \infty} \sum_{k=0}^{\infty} g\left(\frac{k}{s}\right) \frac{(-s)^k}{k!} f^{(k)}(s).$$

Now let $1 < p < \infty$; then for any fixed $\|x^*\| \leq 1$ we have by Hölder's inequality and (18)

$$(25) \quad \begin{aligned} |x^*Ug| &\leq \limsup_{s \rightarrow \infty} \sum_{k=0}^{\infty} \left| g\left(\frac{k}{s}\right) \right| \left| \frac{s^k}{k!} x^* f^{(k)}(s) \right| \\ &\leq \limsup_{s \rightarrow \infty} \left(\sum_{k=0}^{\infty} \left| g\left(\frac{k}{s}\right) \right|^p \frac{1}{s} \right)^{1/p} \left(\sum_{k=0}^{\infty} s^{p-1} \left| \frac{s^k}{k!} x^* f^{(k)}(s) \right|^p \right)^{1/p} \\ &\leq \lim_{s \rightarrow \infty} \left(\sum_{k=0}^{\infty} \left| g\left(\frac{k}{s}\right) \right|^q \frac{1}{s} \right)^{1/q} H_p. \end{aligned}$$

Now it is readily seen that for each linear combination of the $\{e^{-\lambda t}\}$ $\lambda > 0$,

$$\lim_{s \rightarrow \infty} \left(\sum_{k=0}^{\infty} \left| g\left(\frac{k}{s}\right) \right|^q \frac{1}{s} \right)^{1/q} = \left(\int_0^\infty |g(t)|^q dt \right)^{1/q}$$

so that (25) implies

$$(26) \quad \|Ug\| \leq H_p \|g\|_q.$$

Now that U is defined for all functions in $L^q[0, \infty)$ into X it follows by (26) that for all $g \in L^q[0, \infty)$ inequality (26) holds. Since $\|U\|_q \leq H_p$, then it follows (by [1, Th. 13.1]) that there exists a vector measure μ with finite p -semi-variation such that for all $g \in L^q[0, \infty)$

$$Ug = \int_0^\infty g(t) \mu(dt).$$

Specializing to $g(t) = e^{-st}$ for $s > 0$ we obtain (11). Also by [1, Th. 13.1], $\tilde{\mu}_p[0, \infty) = \|U\|_q \leq H_p$ which, together with (22), implies $\tilde{\mu}_p[0, \infty) = H_p$. This completes the proof for $1 < p < \infty$. For $p = \infty$, it follows by (19) that for

$$\begin{aligned} g(t) &= \sum_{i=1}^n a_i \exp(-\lambda_i t) \\ \|Ug\| &\leq H_\infty \lim_{s \rightarrow \infty} \sum_{k=0}^{\infty} \left| g\left(\frac{k}{s}\right) \right| \frac{1}{s} \\ &= H_\infty \|g\|_1. \end{aligned}$$

The proof is concluded now as in the case $1 < p < \infty$.

Since for $p = \infty$, $\tilde{\mu}_p[0, \infty) = \tilde{\mu}_p[0, \infty)$, Theorem 5 also provides us with a representation theorem for measures of finite ∞ -variation. In a way this explains why (19) resembles condition (27) below more than it does condition (18).

For measures with finite p -variation we have the following result.

THEOREM 6. *Let $f(s)$ be a vector-valued function from $[0, \infty)$ into X and let $1 < p < \infty$. Then there exists a vector measure μ , defined on the Borel subsets of $[0, \infty)$ into X , of finite p -variation and such that (11) holds if and only if $f(s)$ has derivatives of all orders in $(0, \infty)$ and*

$$(27) \quad \sup_{s>0} \sum_{k=0}^{\infty} s^{p-1} \left\| \frac{s^k}{k!} f^{(k)}(s) \right\|^p \equiv (H_p)^p < \infty.$$

Furthermore

$$\tilde{\mu}_p[0, \infty) = H_p.$$

PROOF. First suppose (11) holds with μ of finite p -variation. Then

$$\frac{(-s)^k}{k!} f^{(k)}(s) = \int_0^\infty \frac{(st)^k}{k!} e^{-st} \mu(dt) \text{ for } s > 0.$$

Denote

$$p_{sk}(t) = \frac{(st)^k}{k!} e^{-st} \text{ for } s > 0, k = 0, 1, 2, \dots$$

and let for $\lambda > 0$, $A_i = [i/\lambda, (i+1)/\lambda)$, $i = 0, 1, 2, \dots$. Then the step function $\phi_k = \sum_{i=0}^{\infty} p_{sk}(i/\lambda) \chi_{A_i}$ is defined in $[0, \infty)$ and $\phi_k(t) \rightarrow p_{sk}(t)$ as λ approaches infinity in the $L^q[0, \infty)$ norm for every $1 \leq q \leq \infty$. Consequently for each fixed k

$$(28) \quad \int_0^\infty \phi_k(t) \mu(dt) \rightarrow \frac{(-s)^k}{k!} f^{(k)}(s) \text{ as } \lambda \rightarrow \infty$$

and

$$(29) \quad \int_0^\infty \phi_k(t) dt \rightarrow \frac{1}{s} \text{ as } \lambda \rightarrow \infty.$$

Now let n be arbitrary, then

$$\begin{aligned} & \sum_{k=0}^n \left\{ \left\| \int_0^\infty \phi_k(t) \mu(dt) \right\|^p / \left(\int_0^\infty \phi_k(t) dt \right)^{p-1} \right\} \\ & \leq \lambda^{p-1} \sum_{k=0}^n \left\{ \left(\sum_{i=0}^{\infty} p_{sk}(i/\lambda) \|\mu A_i\|^p / \left(\sum_{i=0}^{\infty} p_{sk}(i/\lambda) \right)^{p-1} \right) \right\} \end{aligned}$$

By Jensen's inequality (see [14, p. 23-24]) the last expression is

$$\begin{aligned}
 &\leq \lambda^{p-1} \sum_{k=0}^n \left(\sum_{i=0}^{\infty} p_{sk}(i/\lambda) \right) \left(\sum_{i=0}^{\infty} p_{sk}(i/\lambda) \|\mu A_i\|^p \right) / \left(\sum_{i=0}^{\infty} p_{sk}(i/\lambda) \right) \\
 &= \lambda^{p-1} \sum_{k=0}^n \sum_{i=0}^{\infty} p_{sk}(i/\lambda) \|\mu A_i\|^p \\
 &= \lambda^{p-1} \sum_{i=0}^{\infty} \|\mu A_i\|^p \sum_{k=0}^n p_{sk}(i/\lambda).
 \end{aligned}$$

Since $\sum_{k=0}^{\infty} p_{sk}(t) = 1$ for $0 \leq t < \infty$ and $p_{sk}(t) \geq 0$, it follows now by [1, Prop. 13.1] that

$$\begin{aligned}
 \sum_{k=0}^n \left\{ \left\| \int_0^{\infty} \phi_k(t) \mu(dt) \right\|^p / \left(\int_0^{\infty} \phi_k(t) dt \right)^{p-1} \right\} &\leq \sum_{i=0}^{\infty} \left\{ \|\mu A_i\|^p / \left(\frac{1}{\lambda} \right)^{p-1} \right\} \\
 &\leq (\bar{\mu}_p[0, \infty))^p.
 \end{aligned}$$

Letting λ approach infinity we obtain by (28) and (29),

$$\sum_{k=0}^n s^{p-1} \left\| \frac{s^k}{k!} f^{(k)}(s) \right\| \leq (\bar{\mu}_p[0, \infty))^p$$

which, being true for all n and all s , implies (27) and

$$(30) \quad H_p \leq \bar{\mu}_p[0, \infty).$$

Conversely, suppose that $f(s)$ has derivatives of all orders and that (27) holds. Then evidently (18) holds. Hence the operator U of the proof of Theorem 5 may be defined. This time we know more about the operator U . If A is a set of finite Lebesgue measure then $\chi_A \in L^q[0, \infty)$. It follows by (26) that

$$(31) \quad U\chi_A = \lim_{s \rightarrow \infty} \sum_{k=0}^{\infty} \chi_A\left(\frac{k}{s}\right) \frac{(-s)^k}{k!} f^{(k)}(s).$$

For the linear combinations of the functions $\{e^{-\lambda t}\}$ for $\lambda > 0$ are dense in $L^q[0, \infty)$ and we have for such a combination $g(t)$,

$$\begin{aligned}
 &\left\| \sum_{k=0}^{\infty} \chi_A\left(\frac{k}{s_1}\right) \frac{(-s_1)^k}{k!} f^{(k)}(s_1) - \sum_{k=0}^{\infty} \chi_A\left(\frac{k}{s_2}\right) \frac{(-s_2)^k}{k!} f^{(k)}(s_2) \right\| \\
 &\leq \left\| \sum_{k=0}^{\infty} \left[\chi_A\left(\frac{k}{s_1}\right) - g\left(\frac{k}{s_1}\right) \right] \frac{(-s_1)^k}{k!} f^{(k)}(s_1) \right\| + \\
 &\quad + \left\| \sum_{k=0}^{\infty} g\left(\frac{k}{s_1}\right) \frac{(-s_1)^k}{k!} f^{(k)}(s_1) - \sum_{k=0}^{\infty} g\left(\frac{k}{s_2}\right) \frac{(-s_2)^k}{k!} f^{(k)}(s_2) \right\| + \\
 &\quad + \left\| \sum_{k=0}^{\infty} \left[g\left(\frac{k}{s_2}\right) - \chi_A\left(\frac{k}{s_2}\right) \right] \frac{(-s_2)^k}{k!} f^{(k)}(s_2) \right\| \\
 &= I_1 + I_2 + I_3, \text{ say.}
 \end{aligned}$$

Now by Hölder's inequality (compare with (25))

$$\begin{aligned} I_1 &\leq \sum_{k=0}^{\infty} \left| \chi_A\left(\frac{k}{s_1}\right) - g\left(\frac{k}{s_1}\right) \right| \frac{\|s_1^k f^{(k)}(s_1)\|}{k!} \\ &\leq \left(\sum_{k=0}^{\infty} \left| \chi_A\left(\frac{k}{s_1}\right) - g\left(\frac{k}{s_1}\right) \right|^a \frac{1}{s} \right)^{1/q} H_p \\ &\rightarrow H_p \int_0^{\infty} |\chi_A(t) - g(t)|^q dt, \end{aligned}$$

since χ_A is the characteristic function of a set of finite Lebesgue measures and $g(t)$ is a linear combination of the $\{e^{-\lambda t}\}$ for $\lambda > 0$. Hence for a proper $g(t)$ and all s , sufficiently large $I_1 \leq \varepsilon$. The same is true for I_3 while by (24) $I_2 \rightarrow 0$ as $s_1, s_2 \rightarrow \infty$. This proves (31).

Let A_1, \dots, A_n be disjoint Borel subsets of $[0, \infty)$, each of finite measure, and let $\alpha_1, \dots, \alpha_n$ be constants. Then by (31)

$$\begin{aligned} \sum_{i=1}^n \|U(\alpha_i \chi_{A_i})\| &\leq \limsup_{s \rightarrow \infty} \sum_{k=0}^{\infty} \sum_{i=1}^n \left| \alpha_i \chi_{A_i}\left(\frac{k}{s}\right) \right| \frac{\|s^k f^{(k)}(s)\|}{k!} \\ &\leq \lim_{s \rightarrow \infty} \left(\sum_{k=0}^{\infty} \left(\sum_{i=1}^n \left| \alpha_i \chi_{A_i}\left(\frac{k}{s}\right) \right| \right)^a \frac{1}{s} \right)^{1/q} H_p \\ &= \left(\int_0^{\infty} |\phi(t)|^q dt \right)^{1/q} H_p, \end{aligned}$$

where $\phi = \sum_{i=1}^n \alpha_i \chi_{A_i}$.

Therefore if we define the norm

$$\|U\|_q = \sup \sum_{i=1}^n \|U(\alpha_i \chi_{A_i})\|$$

where the supremum is taken on all step functions $\phi = \sum_{i=1}^n \alpha_i \chi_{A_i}$ (where A_1, \dots, A_n are pairwise disjoint and $\|\phi\|_q \leq 1$), then

$$(32) \quad \|U\|_q \leq H_p.$$

This in turn implies by [1, Th. 13.1 and Cor. 13.1] that there exists a vector measure μ , defined on the Borel subsets of $[0, \infty)$ into X , such that

$$\bar{\mu}_p[0, \infty) = \|U\|_q$$

and for all $g \in L^q[0, \infty)$

$$Ug = \int_0^{\infty} g(t) \mu(dt).$$

Specializing to $g(t) = e^{-st}$ for $s > 0$ we obtain (11). Combining now (30) and (32) we conclude that $\bar{\mu}_p[0, \infty) = H_p$. This completes the proof.

REMARK. If X is the complex field, then $\tilde{\mu}_p[0, \infty)$ and $\bar{\mu}_p[0, \infty)$ coincide and so do Theorems 4 and 5.

In order to relate Theorem 6 more closely to vector L^p spaces we cite our next result (whose proof is similar to that of Theorem 5) making use of [1, Th. 13.8] instead of [1, Th. 13.1 and Cor. 13.1], namely Theorem 7.

THEOREM 7. *Let $f(s)$ be a vector-valued function from $[0, \infty)$ into X , let Z be a norming subspace of X^* , and let $1 < p \leq \infty$. Then there exists a function $G(t)$ from $[0, \infty)$ into Z^* with $\|G(t)\| \in L^p[0, \infty)$ such that for all $z \in Z$*

$$zf(s) = \int_0^\infty e^{-st} G(t)z dt \text{ for } s > 0,$$

if and only if (27) holds (for $1 < p < \infty$) and (19) holds (for $p = \infty$). Moreover

$$\left(\int_0^\infty \|G(t)\|^p dt \right)^{1/p} = H_p \text{ if } 1 < p < \infty$$

and

$$\text{ess sup}_{0 \leq t < \infty} \|G(t)\| = H_\infty \text{ if } p = \infty.$$

If X is reflexive we may take $Z = X^*$ and have the following corollary as an immediate consequence.

COROLLARY 8. *Let $f(s)$ be a vector-valued function from $[0, \infty)$ into a reflexive space X and let $1 < p \leq \infty$. Then there exists a function G from $[0, \infty)$ into X with $\|G(t)\| \in L^p[0, \infty)$ such that*

$$(33) \quad f(s) = \int_0^\infty e^{-st} G(t) dt \text{ for } s > 0,$$

if and only if (27) holds (if $1 < p < \infty$) and (19) holds (if $p = \infty$).

Another necessary and sufficient condition for (33) to hold with $G: [0, \infty) \rightarrow X$ has been given by Miyadera [5]. If X is not reflexive, neither our condition nor Miyadera's is sufficient for the existence of $G: [0, \infty) \rightarrow X$ as demonstrated by Theorem 7, in our case, and explained by Whitford [7, Rem. 1.24] about Miyadera's condition. We do not know the analog of Theorem 7 with Miyadera's condition; nevertheless Theorem 7 provides a complete picture of the non-reflexive case.

To conclude, Theorem 9 is a consequence of Theorem 7 and of [1, Th. 13.8].

THEOREM 9. *Let $f(s)$ be a vector-valued function from $[0, \infty)$ into X and let $1 < p \leq \infty$. If (27) holds (for $1 < p < \infty$) or (19) holds (for $p = \infty$) and if, in addition, the set*

$$\left\{ \sum_{k=0}^{\infty} \phi\left(\frac{k}{s}\right) \frac{(-s)^k}{k!} f^{(k)}(s) \text{ where } \phi \text{ is a step function and} \right. \\ \left. \int_0^{\infty} |\phi| dt \leq 1, s > 0 \right\}$$

is relatively weakly compact, then there exists a function $G(t)$ from $[0, \infty)$ into X with $\|G(t)\| \in L^p[0, \infty)$ such that

$$f(s) = \int_0^{\infty} e^{-st} G(t) dt \text{ for } s > 0.$$

REFERENCES

1. N. Dinculeanu, *Vector measures*, Pergamon Press, 1967.
2. N. Dunford and J. T. Schwartz, *Linear operators I*, Interscience, 1958.
3. E. Hille and R. S. Phillips, *Functional analysis and semigroups*, Amer. Math. Soc. Colloq. Publ. 31, 1957.
4. D. Leviatan, *On the representation of functions as Laplace integrals*, J. London Math. Soc. 44 (1969), 88–92.
5. I. Miyadera, *On the representation theorem by the Laplace transformation of vector-valued functions*, Tôhoku Math. J. 8 (1956), 170–180.
6. I. Tweddle, *Weak compactness in locally convex spaces*, Glasgow Math. J. 9 (1968), 123–127.
7. D. V. Widder, *The Laplace transform*, Princeton Univ. Press, 1946.
8. A. K. Whitford, *Characterization of vector-valued Laplace transforms and moment sequences*, (Ph.D. dissertation), Flinders Univ. of South Australia, 1972.
9. S. Zaidman, *Sur la représentation des fonctions vectorielles par des intégrales de Laplace-Stieltjes*, C. R. Acad. Sci. Paris 245 (1957), 397–399; 247 (1958), 905–907.
10. S. Zaidman, *La représentation des fonctions vectorielles par des intégrales de Laplace-Stieltjes*, Ann. of Math. 68 (1958), 260–277.
11. S. Zaidman, *Representation des fonctions vectorielles par des intégrales de Laplace-Stieltjes et compacité faible*, C. R. Acad. Sci. Paris 248 (1959), 1915–1917.
12. S. Zaidman, *On the representation of vector-valued functions by Laplace transforms*, Duke Math. J. 26 (1959), 189–191.
13. S. Zaidman, *La représentation des fonctions vectorielles par des intégrales de Laplace-Stieltjes* 11, Tôhoku Math. J. 12 (1960), 52–70.
14. A. Zygmund, *Trigonometric series*, Cambridge Univ. Press, 1959.