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ABSTRACT

Representation theorems for vector-valued Laplace transforms are discussed.
Necessary and sufficient conditions are obtained in order that a function be
the Laplace transform of a general vector measure and of a vector measure of
finite variation, finite g-variation or finite g-semi-variation for 1 < ¢ < 0.

1. Introduction

Let X be a Banach space and let f(s) denote a function defined on [0, o0) with
values in X. We shall be interested in finding conditions, necessary and sufficient,
in order that f(s) be the Laplace integral (with respect to some vector measure
defined on the Borel subsets of [0, 0)) which assumes values in X or in X**
that is,

1) fs) = fwe'“u(dt) for s>0,
0

where the integral on the right-hand side of (1) exists in one sense or another. We
shall prescribe conditions on our vector measure such as finite variation or semi-
variation or finite g-variation or g-semi-variation, for 1 < g £ o0, and obtain
necessary and sufficient conditions for the representation to hold.

In recent years extensive work has been done on this subject by Miyadera [5]
and Zaidman [9]-[13]. Most recently, in his thesis [8], Whitford has made a
substantial contribution to the theory. While all of the above papers have made
use of the inverse operator of Widder [7], it is our purpose here to obtain necessary
and sufficient conditions of a different type. We also give a complete solution to
problems in cases that have been left open by the authors mentioned above.
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In Section 2 we discuss measures of finite variation or semivariation and in
Section 3 we deal with measures of finite g-variation or g-semi-variation.

2. Measures of finite variation or semi-variation

Let p be a measure defined on the Borel subsets of [0, co) with values in a
Banach space X. Define the semi-variation of u by

" K " [0, c0) = sup “1:21 oA, "

where the supremum is taken over all finite collections of disjoint Borel sets in
[0, o0) and scalars &; with |a,-| £ 1, and all n = 1. The semi-variation of a vector
measure is always finite. Define the variation of u by

0[0,%0) = sup_ 21 1y

where the supremum is taken over all finite collections of disjoint Borel sets in
[0, «0). Evidently " 7 ” [0,0) < [l #1I [0, 0) and the variation of u need not be
finite.

Our first result extends a result of Widder [7] in the case where X is the complex
field; but employs a different method of proof.

THEOREM 1. Let f(s) be a vector-valued function from [0, ) into X. Then
there exists a vector measure defined on the Borel sets in [0, 00) with values in
X** such that

() u( +)x* is in rca [0, o) for each x* € X*;

3) the mapping x* — u( - )x* is continuous in the w* topologies
of X* and rcal0, o0);

o

4) x*f(s) = J e "u(d)x* for s >0 with x*e X*;
(]
if and only if f(s) is differentiable infinitely often in (0, c0) and
n sk
) sup | X =) | =<
k=0 :

where the supremum is taken over all finite sets of scalars oy with |ai| £1,all
n=0, and all s > 0. Moreover

© | ] [0, 0) = H.
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PROOF. Suppose u exists such that (2), (3), and (4) hold; then for each x*e X*
x*f(s) is holomorphic in 5 > 0, hence f(s) is differentiable infinitely often. By (4)

2 agroo]= [T[E o S |uane

=0

whence

Q sup | T 42106 | < ] [0, 0.

Conversely, suppose that f(s) is differentiable infinitely often in (0, c0) and that
(5) holds. Then a crucial part in the proof (and in fact throughout the whole paper
is the observation that (5) implies that for every A > 0,

w0

e - (= f(")(s) exists, and that

(®
lim 2 e"‘”‘/‘( ) f(")()— f, A>0.

s> k=0

In order to prove this let x* € X*. Then by (5)

e 700 | < H ],

for all n 2 0 and all finite sets of «; with |o; | < 1. Hence
3 2 lxoo| s Hl

In turn this implies that x*f(s) is holomorphic in s> 0 (see Widder [7, Th.
VII.13]). Consequently

w0

z —).k/s( ) f(k)(s) f(k)(s(1 _ e—l/S))

k=0
(see [3, Secs. 3.10, 3.117]) and (8) is evident.

Define now the continuous operator U: Cy[0, 00) - X (where C,[0, o) is the
space of all continuous functions in [0, c0) which vanish at infinity, normed by
the sup-norm) as follows. Since for each 4 >0, e~*' € C,[0, ), we define
U(e™*") = f(4) and extend U linearly to the linear combinations of the functions
{e*}, 4> 0. Now if
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9= X aexp(— A,
i=1
then by (5) and the uniform boundedness principle it follows that

| o (%) GEro0] s s ool

s 0St<w

This in turn implies by (8) that

|Ug| = lim " S g (?) (“k—s,)k F%(s) “
(9) s—o k=0 .
H|g|.
Since the linear combinations of {e=*'}, 1> 0, are dense in C,[0, o) it follows
by (9) that U may be extended to a continuous operator on Cy[0, ) which we
will continue to call U. Now there exists a vector measure satisfying (2) and (3)
(similar to the Bartle-Dunford-Schwartz theorem [2, Th. V1.7.2]) such that for
all g e Cy[0, ) and all x* e X*

]

IIA

x*Ug = fo " g(oyu(dn)x*.

In particular we obtain (4) by taking g(f) = e~** for s> 0. Also “ u“ [0,0)
= || U H < H by (9); hence (6) follows by (7). This completes the proof.
Corollary 2 is an immediate consequence of Theorem 1.

COROLLARY 2. If X is reflexive and f(s) is a vector-valued function from [0, o)
into X, then there exists a measure, defined on the Borel subsets of [0, c0) into X,
such that

(10) x*u(+) is in rca[0, o) for each x* € X*;
(11) f@s) = Jwe""u(dt) for s >0,
0

if and only if f(s) is differentiable infinitely often and (5) holds.
We may want g to take values in X without assuming that X is reflexive.
Theorem 3 achieves this by strengthening condition (5).

THEOREM 3. Let f(s) be a vector-valued function from [0, o) into X. Then
there exists a measure, defined on the Borel subsets of [0, o) into X, such that
(10) and (11) hold if and only if f(s) is differentiable infinitely often in (0, c0)
and the set
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n k
12) T ak%f”"(s):|ozk|§1,0§k§n =0,1,2,---:
k=0 .

is relatively weakly compact.
Another characterization may be found in [8, Th. 1.62].

ProoF. First assume that (10) and (11) are satisfied. Then

n k
13) P k,f""()— f [2 AL ]u(dt).
Nowforanyn%OandIoc,JSl 0Lk,
(—st) - o (F
(14 Z Al eV <e k§o = 1.

Therefore the set (12) is contained in the absolute closed convex hull of R(y), the
range of u. By [6], R(w) is relatively weakly compact; consequently, by the Krein-
Smulian theorem (see [2, Th. V.6.4]), the absolute closed convex hull of R(y) is
weakly compact, hence (12) is relatively weakly compact.

Conversely, suppose (12) is relatively weakly compact. Then (5) holds and we
may define the operator U of the proof of Theorem 1. The operator U is weakly
compact. For if we have a bounded sequence of continuous functions {g()},
‘ g,-| < M say, then the sequence {Ug;} is contained in the closure of the set

n k
{ IR %f(")(s): lo| <M, 05ksn= 0,1,2,---}
k=0 .

which is weakly compact. Now there exists a vector measure from the Borel
subsets of [0, oo) into X similar to [2, Th. V1.7.3] which satisfies (10) such that
for all g e C,[0, )

Ug = fo g(Du(d).

In particular, for g(1) = e~*' where s > 0, we obtain (11). This completes the proof.
We proceed now to vector measures of finite variation. One result is Theorem 4.

THEOREM 4. Let f(s) be a vector-valued function from [0, ) into X. Then
there exists a regular vector measure of finite variation, defined on the Borel
subset of [0, o) into X, such that (11) holds if and only if f(s) is differentiable
infinitely often in (0,0) and

(15) fkk—' f""(s)” =H < .

§>0 k=0
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Furthermore || n|| [0,00) = H
For a different condition see [8, Th. 1.10].

PrROOF. As before, (11) implies that f(s) has derivatives of all orders, and that
(15) is necessary follows immediately by (13) and (14) which also imply that
H <l [0, ).

Conversely, suppose f(s) has derivatives of all orders and that (15) holds. Since
(5) implies

tim 3 eI g0 < 5,
s k=0

this is certainly true with (15) replacing (5). Now the linear combinations of
{e~*} for A > 0 are dense in C,[0, co), therefore it follows easily by (15) that for
each g e Cy[0, o0)

lim Z g( ) (=9 F®(s) exists.
sw k=0 \S
The operator U of the proof of Theorem 1 is thus given by
© — )k
(16) Ug= lim X g(ﬁ)(—,“lf“"(s).
s~w k=0 s/ k!

We prove now that for any finite set of functions gy,::,g,€ Co[0, c0) with
=1 [gi| <1 we have
an % fualsn

Then it follows, similar to [1, Th. 19.2, 19.3] (see also [8, Lem. 0.6]), that there
exists a regular vector measure of finite variation, defined on the Borel subsets of
[0, ) into X, such that

Ug = f " g()u(dt) for g Co[0, o).

In particular (11) follows for g(f) = e~** where s > 0. Thus let g,, -+, g, € C,[0, )
with Xi_, |g;| = 1 and let us prove (17). By (16)

ot 5 315, o3 2o
< im I g(é)lu jci!f”‘)(s) “

s+ k=0

where the last limit exists by (15). Hence
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Elvalsim & 2 fo(5)] [groo]sn

s—~w k=0 i=0

This also implies || u || [0, 00) < H which completes the proof.

3. Measures of finite p-variation or p-semi-variation

Let 1 be a vector measure, defined on the Borel subsets of [0, o) into X. Let
1=p=oand 1/p+1/q = 1. Define the p-semi-variation of u as follows (see

[1, p. 246]).

n
ﬁp[o’ OO) = Sup“ Z aiﬂAi "
=1

where the supremum is taken on all step functions ¢ = Z,L; a;y,, such that the
A’s are pairwise disjoint Borel subsets of [0, o) and such that

f| $()|'dt < 1.

Also define the p-variation of u as follows (see [1, p. 241]).

A0, @) = sup X || [t

where the supremum is taken on all the step function ¢ mentioned above.

Our results in this section generalize representation theorems for Laplace trans-
forms of functions in I?[0, o0). Our conditions are similar to those in Section 2,
and therefore different from the well-known conditions of Widder [7] which, in
the case of reflexive X, were generalized by Miyadera [5].

First we prove Theorem 5.

THEOREM 5. Let f(s) be a vector-valued function from [0, ) into X, and let
1 < p £ 0. Then there is a measure u, defined on the Borel subsets of [0, o) into
X, with finite p-semi-variation such that (11) holds if and only if f(s) is dif-
ferentiable infinitely often in (0, ) and

© k
(18) sup sup X s°°F %x

[x*|s1 §>0 k=0

7
*f(")(s)l =H) <o ifl<p<ow

and

o1
(19) sup ——-“f(")(s) " =H,<owif p= .
>0 k!
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Furthermore fi,{0,0) =H,, 1<p= w.

PrOOF. Suppose first that (11) holds with a vector measure u such that fi,[0, o)
< oo for some 1<p < 0. Then it follows (by [1, Prop.13.1] and a well-known
Riesz theorem) that for each fixed x* € X* with || x*|| < 1, the measure x*p( - ) is
the indefinite integral of a function in IP[0, o), that is, ¢ € I[0, c0) such that
x*ud = [, ¢(t)dt and

(20) f | @ |rdr = (x*),[0, ) < 3,[0,0) if 1 < p <
0

or

@1) ess sup [§(1)] = (*p). [0, 00) < A [0, 0) if p = oo
>0

Also it follows by (11) that
x*f(s) =f e " p(t)dt for s> 0.
0

Hence it follows by [4, Th. 1, 2] and (20) (if 1 < p < ©) and by [7, Th. VIL16a]
and (21) (if p = co) that for each fixed || x* | < 1, x*f(s) has derivatives of all
orders in (0, co). This implies in turn (see [3]) that the same is true for f(s), and

[C100 pa
]

< ,[0,0)if 1 < p < oo,

© sk P
22) sup 3 s"'llpx*f“‘)(s)l

§s>0 k=0

IIA

or
k

S O0) 5 essp [40)]

sup
(23) s>0
< [in[0,00) if p = o0,

This in turn implies (18) and (19) respectively. Conversely, suppose either that
(18) holds (if 1 < p < o) or (19) holds (if p = co). In the case where 1 < p < o0,
then (18) implies that x*f(s) is holomorphic in (0, c0) (by [4, Proof of Th. 1]). The
same method of proof may be used to show that if p = co, then (19) implies the
same. Therefore (8) holds in either cases (see [3]). Now the functions {e~**} for
A >0 are all in [0, o0) for every 1 < q < oo and their linear combinations are
dense in [0, o) for 1 £ g < oo in the respective norms. Therefore if we define

Ue™) = f(4)
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and extend it linearly to the linear combinations of {e~*'} for A > 0, then we will
show that U may be extended to a continuous operator (again denoted by U) of
IX(0, ) into X where 1/p + 1 /g = 1. To this end let g(f) = X/, a,exp(—4;0).
Then by (8)
(4 vg = im % (%) GL o,

s+ k=0

Now let 1 < p < o0; then for any fixed “ x* ” =< 1 we have by Holder’s inequality
and (18)

Sk

|x*Ug| < limsup Z g(%) .X*f(k)(s) l
o a 1/a )
<oz (5 )Y (£ o)
(25) 2w =0 s/1 s k=0 k!
. i kN2 1 \1/9
= ll—rvI:o (:E'o g(_s_) ?) H,

Now it is readily seen that for each linear combination of the {e~**} 1 > 0,
k \q 1 1/q 0 . t/n
o()15) = (], loora)
so that (25) implies

(26) RZIES: AT

Now that U is defined for all functions in L[0, o) into X it follows by (26) that
for all g € I[0, c0) inequality (26) holds. Since | U |, < H,, then it follows (by
[1, Th. 13.1]) that there exists a vector measure p with finite p-semi-variation
such that for all g e [0, o)

lim (E‘.

s=wo \k=0

Ug = f a(Ou(di).

Specializing to g(f) = e~** for s > 0 we obtain (11). Also by [1, Th. 13. 11, 4,[0, )
” U ” < H, which, together with (22), implies f,[0,0) = H - This completes
the proof for 1< p < 0. For p = oo, it follows by (19) that for

9= I aexp(~ A
i=1

IA
2

[Us| = H1i

I
3
«
=
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The proof is concluded now as in the case 1 < p < o0.

Since for p = o0, fi,[0,0) = ﬁP[O, 00), Theorem 5 also provides us with a
representation theorem for measures of finite co-variation. In a way this ex-
plains why (19) resembles condition (27) below more than it does condition (18).

For measures with finite p-variation we have the following result.

THeOREM 6. Let f(s) be a vector-valued function from [0, 0) into X and let
1 < p < . Then there exists a vector measure p, defined on the Borel subsets
of [0, o0) into X, of finite p-variation and such that (11) holds if and only if f(s)
has derivatives of all orders in (0, ) and

Q7N sup Z sP- 1“ — f®(s) “" = (H) < .
s>0 k=0
Furthermore
£,[0,0) = H
Proor. First suppose (11) holds with u of finite p-variation. Then

(- ) f(k)() = (;:) e~ "u(dt) for 5> 0.
0

Denote
k
(D _(_s_t)_ e fors>0, k=012,

and let for A>0,4; = [i/4, i+ 1)/4), i =0,1,2,---. Then the step function
br = T oPulilA) x4, is defined in [0,00) and ¢,(f) - pu(r) as A approaches
infinity in the I#[0, c0) norm for every 1 < g £ co. Consequently for each fixed k

© s
28) f aoud » S0 as - 0
and
(29) j " bt - —:— as A .

0

Now let n be arbitrary, then

= || [ ooutan) '/ ( f °°¢,‘(r)dt)p—l }

<378 (Bl [(, ] )
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By Jensen’s inequality (see [14, p. 23-24]) the last expression is

<27 3 (3 pa) (Z nanlual)[( E putin)

II

T pulifD)] nAi |

t=0

= !
k

RE
8 o

= 2! Z “ pA; “pk=zo Pulil4).

<

Since X, 2o pui() = 1 for 0 £t < 00 and py(t) = 0, it follows now by [1, Prop.
13.1] that

E (I soman [ [(fs0a] ) 2 £ froar/ ()]

< (@,[0, o).
Letting A approach infinity we obtain by (28) and (29),

n k
z Y] s @Glo oy
e k! | =
which, being true for all n and all s, implies (27) and
(30) H, £ i,[0, ).

Conversely, suppose that f(s) has derivatives of all orders and that (27) holds.
Then evidently (18) holds. Hence the operator U of the proof of Theorem 5 may be
defined. This time we know more about the operator U. If 4 is a set of finite
Lebesgue measure then y, € L’[0, o0). It follows by (26) that
G Ura = - % 1, (5) G0,

s—w k=0 .
For the linear combinations of the functions {e~*} for A >0 are dense in
[0, o) and we have for such a combination g(1),

|2 u(E) Solro- £ u(E) -5 o)

S2

|2, i) o)} 5ol +

z g(sf)( ) s x 9(5)( o poo] +

L S2

L [of8) - o) S

= Il+IZ+I3’ Say.

IIA
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Now by Holder’s inequality (compare with (25))

d k _ k 1 (k)
ns 2 fu() o] el
v | E) _ (E) ”L)”"
= (k=0 |XA(51 g $1 s Hs

- pro | xa(t) = g(8)|"at,

since y4 is the characteristic function of a set of finite Lebesgue measures and g(t)
is a linear combination of the {e¢=*'} for A> 0. Hence for a proper g(f) and all s,
sufficiently large I, = e. The same is true for I; while by (24) I, >0 as s,,5, » ©

This proves (31).
Let Ay, -+, A, be disjoint Borel subsets of [0, c0), each of finite measure, and let

o,, -, &, be constants. Then by (31)
k s w
o B3 a(5)] o

im (& (E s (3)])5)
( fo i [ ¢ dt)”qH,,,

Therefore if we define the norm

H U(a,xA)” < lim sup % :IZ

IlM:

IIA

where ¢ = Xi_; X4,

1Tl = sup 2 || Uloiza) |
where the supremum is taken on all step functions ¢ = X{_; «y,, (where
Ay, -, A, are pairwise disjoint and ||¢ || ¢ < 1), then

(32) Null,=H
This in turn implies by [1, Th. 13.1 and Cor. 13.1] that there exists a vector
measure p, defined on the Borel subsets of [0, c0) into X, such that

B,[0,00) = [1Ul,
and for all g € [0, ©)

Ug = J; wg(t)u(dt)-
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Specializing to g(f)= e~** for s > 0 we obtain (11). Combining now (30) and (32)
we conclude that ji,[0, c0) = H,. This completes the proof.

REMARK. If X is the complex field, then fi,[0, ) and [0, ) coincide and
so do Theorems 4 and 5.

In order to relate Theorem 6 more closely to vector I? spaces we cite our next
result (whose proof is similar to that of Theorem 5) making use of [1, Th. 13.8]
instead of [1, Th. 13.1 and Cor. 13.1], namely Theorem 7.

THEOREM 7. Let f(s) be a vector-valued function from [0, o0) into X, let Z be
a norming subspace of X*, and let 1 < p £ oo. Then there exists a function G(1)
from [0, 00) into Z* with ” G(1) ” € P[0, o) such that for all ze Z

0

zf(s) = f e ¥ G(t)zdt for s> 0,
]
if and only if (27) holds (for 1 < p < o) and (19) holds (for p = ). Moreover

© i/q
(L ”G(t)]["dt) =H,ifl<p<o
and

ess sup ” G(@®) “ =H, if p= .

0s5t<wo

If X is reflexive we may take Z = X* and have the following corollary as an
immediate consequence.

COROLLARY 8. Let f(s) be a vector-valued function from [0, o0) into a refixive
space X and let 1 < p £ 0. Then there exists a function G from [0, c0) into X
with | G(t) | e IP[0, o) such that

(33) f@) =on e “G(t)dt for s> 0,
0

if and only if (27) holds (if 1 < p < o0) ard (19) holds (if p = ).

Another necessary and sufficient condition for (33) to hold with G: [0, ) > X
has been given by Miyadera [5]. If X is not reflexive, neither our condition nor
Miyadera’s is sufficient for the existence of G:[0,0)— X as demonstrated by
Theorem 7, in our case, and explained by Whitford [7, Rem. 1.24] about Miya-
dera’s condition. We do not know the analog of Theorem 7 with Miyadera’s
condition; nevertheless Theorem 7 provides a complete picture of the non-
reflexive case,
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To conclude, Theorem 9 is a consequence of Theorem 7 and of [1, Th. 13.8].

THEOREM 9. Let f(s) be a vector-valued function from [0, ) into X and let
1< p£o0. If (27) holds (for 1 < p < o) or (19) holds (for p = ©) and if, in
addition, the set

s/ k!

§ k (—S)k (k) . ,
‘ ¢( ) S(s) where ¢ is a step function and
k=0

fwlq,')ldtg 1,s >0’
0

is relatively weakly compact, then there exists a function G(t) from [0, 00) into X
with || G(t) | € L[0. c0) such that

fGs) = J‘we G dt for s> 0.
0

REFERENCES

1. N. Dinculeanu, Vector measures, Pergamon Press, 1967,

2. N. Dunford and J. T. Schwartz, Linear operators I, Insterscience, 1958.

3. E. Hil'e and R. S. Phillips, Functional analysis and semigroups, Amer. Math. Soc. Colloq.
Publ. 31, 1957.

4. D. Leviatan, On the representat.on of functions as Laplace integrals, J. London Math. Soc,
44 (1969). 88-92.

5. 1. Miyadera, On the representation theorem by the Laplace transformation of vector-valued
Sunctions, Tohoku Math. J. 8 (1956), 170-180.

6. 1. Tweddle, Weak compactness in locally convex spaces, Glasgow Math. J. 9 (1968),
123-127.

7. D. V. Widder, The Laplace transform, Princeton Univ. Press, 1946.

8. A. K. Whitford, Characterization of vector-valued Laplace transforms and moment sequen-
ces, (Ph.D. dissertation), Flinders Univ. of South Australia, 1972.

9. S. Zaidman, Sur la representation des fonctions vectorielles par des intégrales de Laplace-
Stieltjes, C. R. Acad. Sci. Paris 245 (1957), 397-399; 247 (1958), 905-907.

10. S. Zaidman, La representation des fonctions vectorielles par des intégrales de Laplace-
Stieltjes, Ann, of Math. 68 (1958), 260-277.

11. S. Zaidman, Representation des fonctions vectorielles par des intégrales de Laplace-Stielt-
Jes et compacité faible, C. R. Acad. Sci. Paris 248 (1959), 1915-1917.

12. S. Zaidman, On the representation of vector-valued functions by Laplace transforms,
Duke Math. J. 26 (1959), 189-191.

13. S. Zaidman, La representation des fonctions vectorielles par des intégrales de Laplace-
Stieltjes 11, T6hoku Math. J. 12 (1960), 52-70.

14. A. Zygmund, Trigonometric series, Cambridge Univ. Press, 1959.

TeL Aviv UNIVERSITY
TeL Aviv, IsRAEL



